M1.D

M2.C

M3.(a) (i) force per unit mass \checkmark a vector quantity

Accept force on 1 kg (or a unit mass).
(ii) force on body of mass m is given by $F=\frac{G M m}{(R+h)^{2}}$, gravitational field strength $g\left(=\frac{F}{m}\right)=\frac{G M}{(R+h)^{2}} \quad$

For both marks to be awarded, correct symbols must be used for M and m.
(b) (i)

$$
F\left(=\frac{G M m}{(R+h)^{2}}\right)=\frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24} \times 2520}{\left(\left(6.37 \times 10^{6}\right)+\left(1.39 \times 10^{7}\right)\right)^{2}}
$$

$=2.45 \times 10^{3}(\mathrm{~N})$
to 3SF \checkmark
$1^{\text {st }}$ mark: all substituted numbers must be to at least 3SF. If 1.39×10^{7} is used as the complete denominator, treat as $A E$ with ECF available.
$3^{\pi d}$ mark: SF mark is independent.
(ii) $\quad F=m \omega^{2}(R+h)$ gives $\omega^{2}=\frac{2450}{2520 \times 2.03 \times 10^{7}} \quad \checkmark$

$$
\text { from which } \omega=2.19 \times 10^{-4}\left(\mathrm{rad} \mathrm{~s}^{-1}\right) \checkmark
$$

$$
\begin{aligned}
& \text { time period } T\left(=\frac{2 \pi}{\omega}\right)=\frac{2 \pi}{2.19 \times 10^{-4}} \text { or }=2.87 \checkmark 10^{4} \mathrm{~s} \\
& {\left[\text { or } F=\frac{m v^{2}}{R+h} \text { gives } v^{2}=\frac{2.45 \times 10^{3} \times\left(\left(6.37 \times 10^{6}\right)+\left(13.9 \times 10^{6}\right)\right)}{2520}\right.}
\end{aligned}
$$

$$
\text { from which } v=4.40 \checkmark 10^{3}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \checkmark
$$

time period $T\left(=\frac{2 \pi(R+h))}{v}\right)=\frac{2 \pi \times 2.03 \times 10^{7}}{4.40 \times 10^{3}}$ or $\left.=2.87 \times 10^{4} \mathrm{~s} \quad \checkmark\right]$

$$
\begin{aligned}
& {\left[\text { or } T^{2}\right.}=\frac{4 \pi^{2}(R+h)^{3}}{G M} \\
& \quad=\frac{4 \pi^{2}\left(\left(6.37 \times 10^{6}\right)+\left(13.9 \times 10^{6}\right)\right)^{3}}{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}
\end{aligned}
$$

gives time period T $=2.87 \times 10^{4} \mathrm{~s} \checkmark$]
$=\frac{2.87 \times 10^{4}}{3600}=7.97$ (hours)
number of transits in 1 day $=\frac{24}{7.97}=3.01(\approx 3) \checkmark$
Allow ECF from wrong F value in (i) but mark to max 4 (because final answer won't agree with value to be shown).
First 3 marks are for determining time period (or frequency).
Last 2 marks are for relating this to the number of transits.
Determination of $f=3.46 \times 10^{-5}\left(s^{-1}\right)$ is equivalent to finding T by any of the methods.
(c) acceptable use \checkmark
satisfactory explanation
e.g. monitoring weather or surveillance:
whole Earth may be scanned or Earth rotates under orbit
or information can be updated regularly
or communications: limited by intermittent contact
or gps: several satellites needed to fix position on Earth
Any reference to equatorial satellite should be awarded 0 marks.

M4.A

M5.(a) (i) Use of $F-G M m / r^{2}$
C1
Allow 1 for -correct formula quoted but forgetting square in substitution

Correct substitution of data
-missing m in substitution
491 (490)N
A1
-substutution with incorrect powers of 10 Condone 492 N ,
(ii) Up and down vectors shown (arrows at end) with labels

B1
allow W, mg (not gravity); $\quad R$ allow if slightly out of line / two vectors shown at feet
up and down arrows of equal lengths
B1
condone if colinear but not shown acting on body In relation to surface $W \leq R$ (by eye) to allow for weight vector starting in middle of the body
Must be colinear unless two arrows shown in which case R vectors $1 / 2 W$ vector(by eye)
(b) (i) Speed $=2 \pi r / T$

Max 2 if not easy to follow
$2 \pi 6370000 /(24 \times 60 \times 60)$
$463 \mathrm{~m} \mathrm{~s}^{-1}$

Must be 3sf or more
(ii) Use of $F=m v^{2} / r$

C1
Allow 1 for use of $F=$ mr ω^{2} with $\omega=460$
$1.7(1.66-1.68) \mathrm{N}$
A1
(iii) Correct direction shown
(Perpendicular to and toward the axis of rotation)
NB - not towards the centre of the earth
B1
(c) Force on scales decreases / apparent weight decreases

Appreciates scale reading = reaction force
C1
The reading would become 489 (489.3)N or reduced by 1.7 N)

Some of the gravitational force provides the necessary centripetal force
or $R=m g-m v^{2} / r$

M6.A

M7. B

M8. D

Page 5

M9. C

M10. A

M11. A

M12. B

M14. A

